Computing the Dimension of a Polynomial Ideal
نویسندگان
چکیده
Following ideas from [Hei83, DFGS91, MT97] and applying the techniques proposed in [May89, KM96, Küh98], we present a deterministic algorithm for computing the dimension of a polynomial ideal requiring polynomial working space.
منابع مشابه
Border Basis of an Ideal of Points and its Application in Experimental Design and Regression
In this paper, we consider the problem of computing the order ideal and the corresponding border basis for the vanishing ideal of a given finite set of points with multiplicity The ideal of points has different applications in science and engineering. In this paper, we focus on presenting some models related to a real experiment and show the role of our approach in providing good statistical p...
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملBounding Projective Dimension
The use of algorithms in algebra as well as the study of their complexity was initiated before the advent of modern computers. Hermann [25] studied the ideal membership problem, i.e determining whether a given polynomial is in a fixed homogeneous ideal, and found a doubly exponential bound on its computational complexity. Later Mayr and Meyer [31] found examples which show that her bound was ne...
متن کاملComputing the First and Third Zagreb Polynomials of Cartesian Product of Graphs
Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as: ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , ) euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002