Computing the Dimension of a Polynomial Ideal

نویسندگان

  • Anna Bernasconi
  • Ernst W. Mayr
  • Michal Mnuk
  • Martin Raab
چکیده

Following ideas from [Hei83, DFGS91, MT97] and applying the techniques proposed in [May89, KM96, Küh98], we present a deterministic algorithm for computing the dimension of a polynomial ideal requiring polynomial working space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Border Basis of an Ideal of Points and its Application in Experimental Design and Regression

In this paper, we consider the problem of computing the order ideal and the corresponding border basis for the vanishing ideal of a given finite set of points with multiplicity The ideal of points has different applications in science and engineering. In this paper, we focus on presenting some models related to a real experiment and show the role of our approach in providing good statistical p...

متن کامل

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

متن کامل

Bounding Projective Dimension

The use of algorithms in algebra as well as the study of their complexity was initiated before the advent of modern computers. Hermann [25] studied the ideal membership problem, i.e determining whether a given polynomial is in a fixed homogeneous ideal, and found a doubly exponential bound on its computational complexity. Later Mayr and Meyer [31] found examples which show that her bound was ne...

متن کامل

Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs

Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as:     ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , )  euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002